诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******
相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。
你或身边人正在用的某些药物,很有可能就来自他们的贡献。
2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.
在“最微妙”的G20峰会上,习近平为何再提这句印尼谚语?******
(近观中国)在“最微妙”的G20峰会上,习近平为何再提这句印尼谚语?
中新社北京11月16日电 题:在“最微妙”的G20峰会上,习近平为何再提这句印尼谚语?
作者 黄钰钦 谢雁冰 梁晓辉
“正如印尼谚语所说,甘蔗同穴生,香茅成丛长。分裂对抗不符合任何一方利益,团结共生才是正确选择。”为应对当前的全球性挑战,中国国家主席习近平在印尼巴厘岛,面向世界主要大国领导人如此呼吁。
当地时间11月15日,二十国集团领导人第十七次峰会在印度尼西亚巴厘岛举行。国家主席习近平出席并发表题为《共迎时代挑战 共建美好未来》的重要讲话。这是习近平步入会场。 新华社记者 鞠鹏 摄当地时间15日至16日,二十国集团(G20)领导人第十七次峰会在印度尼西亚巴厘岛举行。在这个东南亚热带海岛,世界和地区大国的领导人面对面围坐一张会议桌前,共商全球性挑战的应对之道。
当前,新冠肺炎疫情延宕,世界经济复苏乏力,地缘政治局势紧张,粮食和能源等多重危机叠加。以至于在G20巴厘岛峰会开始前,英国广播公司(BBC)预测称:“这个隶属印度尼西亚的岛屿将举办可能是二十国集团历次以来,最微妙和最紧张的一次峰会。”
在这种背景下,习近平在峰会第一阶段上的讲话主题是“共迎时代挑战 共建美好未来”,其中呼吁各方团结、共展责任担当之意尽显。讲话中的这句印尼谚语,也成为习近平在G20巴厘岛峰会表达中方倡议的缩影。在外界看来,面对经济总量约占全球85%的G20成员,“甘蔗同穴生,香茅成丛长”,正是在呼吁“团结”。
习近平既阐明团结的意义,也指明分裂的后果。他直言,“团结就是力量,分裂没有出路”。在世界面临重大挑战的时刻,中方明确表达,构筑“小院高墙”也好,搞封闭排他的“小圈子”也罢,都是早已过时的冷战思维,只会割裂世界,阻碍全球发展和人类进步。
当地时间11月15日,二十国集团领导人第十七次峰会在印度尼西亚巴厘岛举行。国家主席习近平出席并发表题为《共迎时代挑战 共建美好未来》的重要讲话。 新华社记者 鞠鹏 摄“无论是世界经济脆弱性突出,还是地缘政治局势紧张,和平赤字、发展赤字、治理赤字的背后核心问题是国际社会没有进行有效的团结合作。”中国外交学院副院长高飞指出,中方在G20巴厘岛峰会场合借当地谚语高调呼吁团结,正是直指当前问题的根本,强调全球主要经济体应同舟共济应对挑战。
其实,“甘蔗同穴生,香茅成丛长”这一谚语,并不是习近平第一次在国际场合引用。在今年4月的博鳌亚洲论坛2022年年会开幕式上,习近平同样藉此强调,要积极推动亚洲合作,指出“共赢合作是亚洲发展的必由之路”。
一则谚语,两处场合,寓意相通。
由此也可更清晰地看出,中方强调加强团结的目的之一正是促进合作。这一立场也符合国际社会期待,正如印尼《雅加达邮报》在会前向与会各国领导人发出的呼吁:“来巴厘岛请不要只是奔着吵架”。
合作,理应成为G20的共识。在巴厘岛峰会上,习近平所提的中方倡议既着眼粮食、能源安全这一全球发展领域最紧迫的挑战,强调“二十国集团应该把这件事放在心上”,也聚焦长远的合作目标,提出要推动更加包容、更加普惠、更有韧性的全球发展。
“中方强调的合作领域既瞄准当前合作的堵点,也划出国际合作的重点。”中国社科院亚太与全球战略研究院亚太安全与外交研究室主任张洁表示,粮食安全和能源安全被提上主要议程是要解决最迫在眉睫的难点,而包容、普惠、韧性的发展要求是因应世界经济面临衰退风险提出的治本策略。
事实上,G20这一机制正是全球主要经济体通过加强合作而形成的一种“危机解决机制”。2008年金融海啸席卷全球,G20于当年11月召开第一次领导人峰会,意图通过团结合作、共同协调把正在滑向悬崖的世界经济拉回到稳定和复苏轨道。
这是11月12日在印度尼西亚巴厘岛拍摄的峰会主会场外的峰会标识。二十国集团领导人第十七次峰会即将在印度尼西亚巴厘岛举行。新华社记者 王益亮 摄 图片来源:新华网当前,百年变局与世纪疫情交织叠加,世界经济再次来到十字路口。国际货币基金组织(IMF)近期预测,超过三分之一的全球经济体将在2022年或2023年出现萎缩。世界期待G20再次展现“危机应对”的合作力、行动力。
因此,有评论指出,习近平引用这句印尼谚语背后,同样也有一层回溯G20初心之意。正如他在发言中所言,“我历来主张,二十国集团要坚守团结合作初心,传承同舟共济精神,坚持协商一致原则”。
“G20的初心和使命就是要通过团结合作解决全球性问题。”高飞分析称,在全球经济复苏乏力的当下,中方表明了G20要坚守团结合作初心,是意在强调国际社会特别是大国能真正回归和平与发展的主题,回归理性求同存异,最大限度发挥团结合作的作用,以实现“共同复苏、强劲复苏”的目标。
“共同复苏、强劲复苏”,正是此次峰会的主题。这几天,这一主题标语在巴厘岛随处可见,与岛上随处可见的甘蔗和香茅元素一样,峰会时刻的这一热带岛屿,正以自己的方式带给世人启迪。(完)
(文图:赵筱尘 巫邓炎)